1. ВВЕДЕНИЕ

Настоящая инструкция распространяется на измерители давления многофункциональные:

- стандартного исполнения ПРОМА-ИДМ-4х и

с выносными датчиками ПРОМА-ИДМ(В)-4х.

- моноблочного исполнения ПРОМА-ИДМ(В)-4х-ДД

Различаются по принципу измеряемого параметра:

- вакуумметрического давления ПРОМА-ИДМ-4х-ДВ;
- избыточного давления ПРОМА-ИДМ-4х-ДИ;
- вакуумметрического и избыточного давления
- (тягонапоромер) ПРОМА-ИДМ-4х-ДИВ;

• разности давлений ПРОМА-ИДМ-4х-ДД. и содержит сведения об устройстве, принципе действия, а также указания необходимые для правильной эксплуатации и полного использования технических возможностей приборов ПРОМА-ИДМ-4х и ПРОМА-ИДМ(В)-4х.

2. НАЗНАЧЕНИЕ ИЗДЕЛИЯ

2.1 Измерители предназначены для преобразования избыточного, вакуумметрического, абсолютного давления и разности давлений воздуха, природных и нейтральных газов в токовый сигнал (4-20) мА, дальнейшей микропроцессорной обработки и управления внешними электрическими цепями от сигнализирующего устройства.

Индикация текущего значения измеряемого параметра осуществляется на светодиодном 7-ми сегментном 4 знаковом индикаторе.

Измерители предназначены для построения современных систем контроля, аварийной защиты, сигнализации и управления на установках и объектах теплоэнергетического комплекса, в системах кондиционирования воздуха, в научном эксперименте и других отраслях.

3. ТЕХНИЧЕСКИЕ ДАННЫЕ

N⁰	Наименование параметра	Размерность	Величина
1	Выходной сигнал постоянного тока	мА	4 - 20
2	Сопротивление нагрузки для токового выхода	Ом	1 - 500
3	Максимальное коммутируемое напряжение	В	= 30B,
			~220B
4	Максимальный коммутируемый ток	А	2
5	Погрешность индикации	%	≤ 1
6	Погрешность срабатывания уставки	%	≤ 1
7	Погрешность выходного токового сигнала	%	≤ 1
8	Напряжение питания:		
	 переменный ток (50 или 60 Гц) 	В	220^{+22} -33
	• постоянный ток	В	24±2,4
9	Потребляемая мощность:		
	 для ~ 220В 50 Гц 	BA	≤2
	• для =24В	Вт	≤2
10	Масса	КГ	≤0,5
11	Габариты:		
	ширина х высота х длина	ММ	97x48x125

3.1 Основные технические характеристики измерителей приведены в таблице 1.

3.2 Диапазоны измеряемых давлений для различных моделей измерителей приведены в таблице 2.

Nº			Предел	Перегрузка	Рабоче
п/п	Тип	Модель	измерений		е
			кПа	кПа	давлени
					e
	14				кі іа
1.	Измеритель	ИДМ-ДВ-2,5	- 2,5	- 50	
2.	вакуумметрического	ИДМ-ДВ-4	- 4,0	- 50	
3.		ИДМ-ДВ-6	- 6,0	- 50	
4.	ПРОМА-ИДИІ-4х-до	ИДМ-ДВ-10	- 10	- 50	
5.		ИДИІ-ДВ-16	-16	-100	
0. 7		ИДИІ-ДВ-25	- 25	-100	
/. 0		ИДИ-ДВ-40	- 40	-100	
0.		иди-ди-0,25	+0,25	+20	
9. 10		иди-ди-0,0	+1.0	+20	
10.		ИЛМ_ЛИ_1 6	+1,0	+20	
12		ИЛМ-ЛИ-2.5	+2.5	+50	
12.		ИЛМ-ЛИ-4	+4	+50	
10.	избыточного	ИЛМ-ЛИ-6	+6	+50	
15	лавления	ИЛМ-ЛИ-10	+10	+50	
16	ПРОМА-ИЛМ-4х-ЛИ	ИЛМ-ЛИ-16	+16	+100	
17		ИЛМ-ЛИ-25	+25	+100	
18		ИЛМ-ЛИ-40	+40	+100	
19		ИЛМ-ЛИ-60	+60	+200	
20.		ИДМ-ДИ-100	+100	+200	
21.		ИДМ-ДИ-160	+160	+400	
22.		ИДМ-ДИ-200	+200	+400	
23.		ИДМ-ДИВ-0,08	± 0.08	± 20	
24.	Измеритель	ИДМ-ДИВ-	± 0.125	± 20	
	вакуумметрического	0,125	-, -		
25.	И	ИДМ-ДИВ-0,25	± 0,25	± 20	
26.	ИЗО́ЫТОЧНОГО	ИДМ-ДИВ-0,8	± 0,8	± 20	
27.	давления	ИДМ-ДИВ-2	± 2	± 20	
28.	ПРОИА-ИДИІ-4Х-	ИДМ-ДИВ-5	± 5	± 100	
29.	див	ИДМ-ДИВ-12,5	± 12.5	± 100	
30.		ИДМ-ДИВ-20	± 20	± 100	
31		ИДМ-ДД-0,1	0,1	± 20	100/300
32		ИДМ-ДД-0.16	0.16	+ 20	100/300
33		ИЛМ-ЛЛ-0.25	0.25	+ 20	100/300
34		ИЛМ-ЛЛ-0 6	0.6	+ 20	100/300
35	Измеритель	ИЛМ-ЛЛ-1	1 0	+ 20	100/300
36	разности		1,6	+ 20	100/300
37	давлений	ИЛМ_ЛЛ_2 5	25	<u> </u>	75
38	ПРОМА-ИДМ-4х-ДД	<u>идм-дд-2,5</u> ИЛМ_ЛЛ_4 0	<u>2,5</u> <u>4</u> 0	+50	75
30		<u>иди дд 1,0</u> ИЛМ-ЛЛ-6 0	60	+50	75
40	ł	ИЛМ-ЛЛ-10	10	+50	75
41	{	ИДМ-ДД-16	16	+100	200
42		ИДМ-ДД-25	25	+100	200
43		ИДМ-ДД-40	40	+100	200

		······································		H	
N⁰			Предел	Пере-	Рабочее
п/п	Тип	Модель	измерений	грузка	давление
			кПа	кПа(кГ/см	кПа
				<u> </u>	
1.	Измеритель	ИДМ-ДВ(В)-2,5	- 2,5	- 50	
2.	вакуумметричес	ИДМ-ДВ(В)-4	- 4,0	- 50	
3.	КОГО	ИДМ-ДВ(В)-6	- 6,0	- 50	
4.	давления	ИДМ-ДВ(В)-10	- 10	- 50	
5.		ИДМ-ДВ(В)-16	-16	-100	
6.	идии(<i>б)-</i> 4х-дб	ИДМ-ДВ(В)-25	- 25	-100	
7.		ИДМ-ДВ(В)-40	- 40	-100	
8.		ИДМ-ДИ(В)-0,25	+0,25	+20	
9.		ИДМ-ДИ(В)-0,6	+0,6	+20	
10.		ИДМ-ДИ(В)-1	+1,0	+20	
11.		ИДМ-ДИ(В)-1,6	+1,6	+20	
12.	Измеритель	ИДМ-ДИ(В)-2,5	+2,5	+50	
13.	избыточного	ИДМ-ДИ(В)-4	+4	+50	
14.	лавления	ИДМ-ДИ(В)-6	+6	+50	
15.	ПРОМА-	ИДМ-ДИ(В)-10	+10	+50	
16.	ИДМ(В)-4х-ДИ	ИДМ-ДИ(В)-16	+16	+100	
17.		ИДМ-ДИ(В)-25	+25	+100	
18.		ИДМ-ДИ(В)-40	+40	+100	
19.		ИДМ-ДИ(В)-60	+60	+200	
20.		ИДМ-ДИ(В)-100	+100	+200	
21.		ИДМ-ДИ(В)-160	+160	+400	
22.		ИДМ-ДИ(В)-200	+200	+400	
23.	Измеритель	ИДМ-ДИВ(В)-0,08	± 0,08	± 20	
24.	вакуумметричес	ИДМ-ДИВ(В)-0,125	± 0,125	± 20	
25.	кого и	ИДМ-ДИВ(В)-0,25	± 0,25	± 20	
26.	избыточного	ИДМ-ДИВ(В)-0,8	± 0,8	± 20	
27.	давления	ИДМ-ДИВ(В)-2	± 2	± 20	
28.	ΠΡΟΜΑ-	ИДМ-ДИВ(В)-5	± 5	± 100	
29.	ИДМ(В)-4х-ДИВ	ИДМ-ДИВ(В)-12,5	± 12,5	± 100	
30.	1	ИДМ-ДИВ(В)-20	± 20	± 100	
31		ИДМ-ДД(В)-0.1	0.1	± 20	300/600
32		ИДМ-ДД(В)-0.16	0.16	+ 20	300/600
33	измеритель	ИЛМ-ЛЛ(В)-0 25	0.25	+ 20	300/600
34	разности лавлений	ИЛМ-ЛЛ(В)-0.6	0.6	+ 20	300/600
35		ИЛМ_ПЛ(В)_1	1.0	+ 20	300/600
36	ИЛМ(R)- 4х-ЛЛ		1,0	<u> </u>	300/600
27	тниц <i>о /- тк-дд</i> ИПИ	иди-дд(б)-1,0	1,0	± 20	75/600
31	Моноблок	иди-дд(о)-2,3	2,5	+50	75/000
20	ПРОМА-	иди-дд(о)-4,0	4,0	+50	75/000
39	ИДМ(В)- 4х-	иди-дд(В)-0,0	0,0	+50	1 0 /0UU 75 /000
40	ДД(M)	иди-дд(в)-10	10	+00	000/CO
41	1 1F3()	идиндд(В)-10	10	+100	200/600
42	{	ИДИ-ДД(В)-25	25	+100	200/600
43		идіч-дд(в <i>)-</i> 40	40	+100	200/600

Измерители ПРОМА-ИДМ(В) с выносным датчиком давления

№ п/п	Тип	Модель	Предел измерений кПа	Пере- грузка кПа(кГ/см ²)	Рабочее давление кПа
44	Измеритель избыточного давления газа и жидкости ПРОМА- ИДМ(В)-4х- ДИ(ж)	ИДМ-ДИ(В)-Ж) 0,5 кгс/см ²	+0,5кгс/см ²	(+1)	
45		ИДМ-ДИ(В)-Ж 1 кгс/см ²	+1кгс/см ²	(+2)	
46		ИДМ-ДИ(В)-Ж 2,5 кгс/см ²	+2,5 кгс/см ²	(+5)	
47		ИДМ-ДИ(В)-Ж 4 кгс/см ²	+4кгс/см ²	(+10)	
48		ИДМ-ДИ(В)-Ж 6 кгс/см ²	+6кгс/см ²	(+25)	
49		ИДМ-ДИ(В)-Ж 10 кгс/см ²	+10кгс/см ²	(+25)	
50		ИДМ-ДИ(В)-Ж 16 кгс/см ²	+16кгс/см ²	(+40)	
51		ИДМ-ДИ(В)-Ж 25 кгс/см ²	+25кгс/см ²	(+50)	

3.3 Средняя наработка на отказ - 100000 час.

Степень защиты измерителей соответствует IP20 по ГОСТ 14254.

3.4.Номинальные значения климатических факторов – по группе УХЛЗ.1 ГОСТ15150. При этом значения температуры и влажности окружающего воздуха должны устанавливаться равными:

- верхнее значение предельной рабочей температуры, +50°С;
- нижнее значение предельной рабочей температуры, +5°С;
- рабочее значение относительной влажности, 80% при 35°С;

3.5.Измерители должен выдерживать при эксплуатации воздействие на него механических факторов внешней среды, соответствующее группе исполнения N1 по ГОСТ12997:

• вибрации с частотой (10-55)Гц со смещением до 0,15 мм.

4. СРЕДСТВА ИЗМЕРЕНИЯ И ОБОРУДОВАНИЕ, ПРИМЕНЯЕМЫЕ ПРИ НАСТРОЙКЕ

4.1 При проведении настройки применяются следующие средства измерения и оборудование:

Наименование средств проверки	Технические характеристики
1. Персональный компьютер	С установленной SCADA – системой на базе
	Windows 98, 2000, XP .
2. Программатор АС-2	С версией asisp не ниже 1027
3. Преобразователь интерфейса RS232 /	-

	1
RS485 типа ADAM-4520	
4. Вольтметр цифровой В7-77	Измерение тока, пределы измерений
	20мА,200мА, погрешность ± 0,25%
5. Блок питания регулируемый DK-4324	= 24B
0. Пулы проверки	Контроль срабатывания реле имитация
7. Микроманометр МКВ-250	обрыва цепи питания, коммутация на ADAM- 4520 и В7-77 Пределы измерений (0-2,5) кПа,
8. Манометры МО, вакуумметры ВО и	класс точности 0,02
напоромеры типа НОСП образцовые	Пределы измерений 4, 10, 40, 100, 200 кПа;
9. Манометры технические	10, 40 кгс/см ² . Класс точности 0,15; 0,25; 0,4
пружинные МТ	Пределы 100кПа и 600 кПа,
11.Прессы воздушные серии ПВ	класс точности 0,6
12. Компрессор С-412М	\pm (0-20) κΠa, (0-400) κΠa
13. Пресс масленый МП-60	$(0-60) \ \text{krc/cm}^2$
14. Набор отверток	$(0-60) \ \text{krc/cm}^2$
15. Термокамера	Ширина лезвия –1;2;3 мм
	Регулирование температуры до 75°С и
	выше

4.2 Возможна замена средств измерения и оборудования, применяемых при настройке на аналогичные по техническим характеристикам.

5. УСЛОВИЯ НАСТРОЙКИ И РЕГУЛИРОВКИ

5.1 Настройку и регулировку проводить в следующих условиях:

- Температура измерителя и окружающей среды (23±5) ⁰С;
- Относительная влажность от 30 до 80 %;
- Давление в помещении, где проводится настройка от 84 до 106,7 кПа;
- Вибрация, тряска, удары, наклоны и магнитные поля (кроме земного), влияющие на работу изделия, должны отсутствовать.

6. УКАЗАНИЕ МЕР БЕЗОПАСНОСТИ

6.1 При проведении настройки, регулировки соблюдать требования техники безопасности согласно «Правилам технической эксплуатации электроустановок потребителей и правилам техники безопасности при эксплуатации электроустановок потребителей».

6.2 К проведению настройки и регулировки Прома-ИДМ допускаются лица, имеющие соответствующую квалификацию и изучившие настоящую инструкцию.

7. ПОРЯДОК И МЕТОДИКА НАСТРОЙКИ

- 7.1 Программирование микроконтроллера измерителя.
- 7.1.1 Включить компьютер.
- 7.1.2 Собрать схему, приведенную на рисунке 1.

Рисунок 1.

На компьютере должна быть установлена программа Silabs Flash Programmer (ярлык программы после установки появляется на рабочем столе Windows) и к любому USB порту подключен отладочный адаптер USB DEBUG ADAPTER фирмы Silicon Laboratories.

7.2 Последовательность программирования.

7.1.3 Подключите разъем адаптера к разъему программирования Р1 и провода питания (24 или 220 В) к соответствующим контактам разъема U2 на плате ИДМ.

- 7.1.4Включите питание ИДМ.
- 7.1.5 Запустите программу Silabs Flash Programmer.
- 7.1.6 Установите флажки главного окна программы как показано на рис.2.

Set Memory	Flash Eras	e	Multi-device	JTAG Progra	amming
Connect/Disconnect	Dow	nload Hex F	le/Go/Stop	Get	Memory
Debug Interface		1			
C JTAG C C	2				
Debug Adapter					
C EC2 Serial Adapter		USB Del	bug Adapter		
COM Port: COM1	~	Adapter Selection:	EC300002E7/	•	
Baud Rate: 115200	7	Powert Note: T support	arget after disc oolstick device the power opti	onnect es do not ion.	
		Enu	umerate USB	1	
Disable Dialogs on Co	onnect and	Disconnect	C	Connect	
		2.01			-
Programming DLL Version:		2.01			
EC2 Serial Adapter Firmwa	re Version:				
JSB Debug Adapter Firmw	are Version	: _			
JSBHID.DLL Version		1.3.0.	0		
Device Name:					
control Humo.					

Рис.2. Интерфейс программы.

7.1..7. Нажмите кнопку «Connect» (соединить). В случае успешного соединения появится окно:

Adapter Selection:
Power target after disconneo. 115200 FlashUtil K devices do not wer option.
Connected USB
Dialogs on Connect Disconnect
DLL Version:
ter Firmware Version:
imware Version:

Нажмите кнопку «ОК». Соединение установлено.

7.1.8 Перейдите на вкладку Download Hex File/Go/Stop.

il Laboratories riasil otility	
Set Memory Flash Erase Multi-device J Connect/Disconnect Download Hex File/Go/Stop	TAG Programming Get Memory
Download Filename Browse	Download
	Go
Disable Dialogs on Download	
Erase all Code Space before download	
Lock Code Space after download	

7.1.9. В окне Download Filename введите или выберите через кнопку Browse требуемый hex-файл для прошивки, для встроенных датчиков версия прошивки 2, для выносных - 3. Нажмите кнопку Download. В случае удачного завершения появится окно:

Lock Code So	one ofter do	heolow	
	FlashUtil	×	
	i	Succeeded Downloading Hex File	
		ОК	

Загрузка hex-файла завершена успешно. С помощью кнопки Go можно сразу запустить программу на выполнение.

7.1.10. Перейдите на вкладку Connect/Disconnect.

7.1.11 После программирования микроконтроллера измеритель отдается на лакировку.

7.2 Калибровка измерителя.

7.2.1 Собрать схему согласно рисунку 3.

Рисунок 3 - Схема калибровки ПРОМА-ИДМ.

М1 – манометр (вакуумметр, напоромер, тягонапоромер) образцовый кл.0,25;

А1 - преобразователь интерфейса RS232 / RS485 типа ADAM-4520;

A2 – ЭВМ РС с установленной SCADA – системой;

Ж – жгут для соединения РС и ADAM-4520, схема приведена в приложении 4.

7.2.2 Установить органы управления пульта проверки в исходное состояние:

тумблер «Сеть» в положение «Выкл»; тумблер «24В - 220В» в положение «220В». Включить компьютер, включить питание приборов В7-77, Б5-29.

Включить измеритель, установив тумблер «Сеть» на пульте проверки в положение «Вкл» и прогреть в течение 10 мин, при этом на табло измерителя должно высветиться любое значение.

Переключить на пульте проверки тумблер «24В - 220В» в положение «24В», при этом на табло измерителя должна сохраниться идикация, в противном случае выявить и устранить неисправность измерителя.

Вернуть тумблер «24В - 220В» в положение «220В».

7.2.3. Программа тестирования и калибровки.

7.2.43апустить н	а компьютере программу	IDMConfig.exe

СОМ-порт 1 💌 Адрес прибора 1 💌			Калибровка прибора
Текущие значения Прибор № 1 Давление Р -0,02	Пределы измерения -0,01 Ртах	Пределы сигнализации и состояния реле 0 MAX2 0 MAX1 0 MIN1 0 MIN2	Чтение Интервал опроса От
Настройки Преде. 0 Pmin2 Pmin	пы сигнализации 0 0 1 Pmax1	Г Реле МАХ2 Г Реле МАХ1 Г Реле MIN1 Г Реле MIN1 Г Реле MIN2	Запись

Рис. 3.1. Интерфейс программы **IDMConfig** в режиме тестирования.

7.2.5. Тестирование.

Программа запускается в рабочем режиме. В этом режиме главное окно программы разбито на 3 области.

В верхней расположены окна для выбора СОМ порта компьютера, к которому подключен преобразователь интерфейса RS-232/RS-485 и измеритель «ПРОМА-ИДМ», сетевого адреса прибора и кнопка для перехода в режим калибровки.

Средняя область предназначена для чтения текущих значений и настроек прибора. Текущие значения давления, пределы измерения, пределы сигнализации и состояния релейных выходов считываются или однократно по нажатию кнопки «Чтение» или последовательно с интервалом заданным в окне выбора «Интервал опроса».

Нижняя область служит для установки пределов сигнализации и состояния релейных выходов. Изменение состояния релейных выходов возможно только в том случае если параметр П_06 настроек прибора (установка положения коммутирующих контактов реле) равен 4

Интерфейс программы IDMConfig в случае первого включения прибора показан на рис.3.1.

7.3. Калибровка.

7.3.1. Для перехода в режим калибровки нажмите кнопку «Калибровка».

🛞 Программа тестирования и калибровки приборов ПРОМА-ИДМ-М									
СОМ-порт 🚺 Адрес прибора 1	▼ ⊙ Оди ▼ Сете	ночный прибор 5 RS-485		Рабочий	режим				
Калибровка Тип	Диапазон (КПа)	Преде	Предельные значения (КПа)						
ПРОМА-ИДМ-ДВ	• •2,50 •	н	ижнее -3,0	Верхне	e 0				
Настройка усиления по каналу давления									
Уст. нуля	Ko	од АЦП		Чтение	Стоп				
Калибровка датчика при нормальной температуре									
Гемпература	Min 1/2 Min	Ноль	1/2 Max	Max	Ok				
С Высокая		Haufan Na			Отмена				
С Низкая		триоор 1/2		1	- Interna				
Калибровка токового выхода 3000 4 mA 65532 20 mA Шаг 2 Ok									

Рис. 3.2. Интерфейс программы **IDMConfig** в режиме калибровки.

В верхней части главного окна расположены окна для выбора СОМ порта компьютера, к которому подключен преобразователь интерфейса RS-232/RS-485 и измеритель «ПРОМА-ИДМ», сетевого адреса прибора, переключатель «Одиночный прибор/Сеть RS-485» и кнопка для возврата в рабочий режим.

Ниже расположены окна с выпадающими списками для выбора типа прибора и рабочего диапазона измерения. Нижнее и верхнее предельные значения давления формируются автоматически как ±20% от верхнего и нижнего рабочего диапазона.

Имеется возможность выбора пользовательского диапазона. Для этого в выпадающем списке «Диапазон» выберите строку «новый». Справа появятся два окна редактирования, в которые необходимо ввести нижнее и верхнее значения пользовательского диапазона. Предельные значения в этом случае также должны быть введены вручную (см. рис.3.3).

📡 Программа тестирования и калибровки приборов ПРОМА-ИДМ-М								
СОМ-порт 1 Адрес прибора 1	• (Одиночный прибор Сеть RS-485 		Рабочий режим				
Калноровка Тип ПРОМА-ИДМ-ДИВ 💌	Диапазон (КПа) Новый	Новый (КПа) -777 7777	Предо Нижнее -999	ельные значени Верхне	яя (KIIa) e 999			
Уст. нуля	Hao	стройка усиления по к Код АЦП	аналу давления	Чтение	Стоп			
Температура © Нормальная —	Калибр Min 1/2	овка датчика при норм Min Ноль	альной температуре 1/2 Max	Max	Ok			
 С Высокая С Низкая 		Прибор №	ă]	Отмена			
Калибровка токового выхода 3000 4 mA 65532 20 mA Шаг 2 Ok								

Рис. 3.3. Интерфейс программы **IDMConfig** в режиме калибровки в случае выбора пользовательского диапазона.

7.3.2. Порядок калибровки датчика давления.

Перед началом калибровки необходимо компенсировать смещение нуля датчика давления и настроить усиление. Для этого при нулевом давлении нажмите кнопку «Уст.нуля» и дождитесь окончания операции. При этом на экране будет окно с сообщением «Ждите», а по окончании операции высветится код с АЦП. Нажмите кнопку «Чтение». Код АЦП будет считываться с прибора и отображаться с интервалом 1 сек. Проконтролируйте его значение и при необходимости отрегулируйте усиление. Значение кода АЦП не должно быть меньше -30000 для нижнего предельного значения давления и не должно быть больше 30000 для верхнего предельного значения давления. По окончании регулировки нажмите кнопку «Стоп».

Калибровка датчика производится в три приема: при нормальной температуре (20±5 °C), при высокой температуре (в термокамере) и при низкой температуре (в морозильной камере). Выбор температурного режима калибровки осуществляется переключателем «Нормальная/Высокая/Низкая».

Последовательность действий аналогична для всех трех режимов:

- 1) Задайте нулевое значение параметра калибратором давления, нажмите кнопку «Ноль» и дождитесь появления под ней надписи «Ок»;
- Задайте верхнее или нижнее предельное значение параметра калибратором давления (в зависимости от типа прибора), нажмите следующую ставшую доступной кнопку (Мах или Min) и дождитесь появления под ней надписи «Ок»;
- Последовательно задавайте требуемое значение параметра калибратором давления и нажимайте следующую ставшую доступной кнопку до тех пор пока все кнопки в ряду кроме кнопки «Ок» станут недоступны;
- 4) Нажмите кнопку «Ок». Результаты калибровки текущего температурного режима сохраняются в энергонезависимой памяти (EEPROM).

Кнопка «Отмена» до сохранения в EEPROM позволяет отказаться от выполненных операций и вернуться к первому пункту последовательности.

7.3.3. Калибровка датчика давления в сети RS-485.

Возможна калибровка ряда приборов объединенных в сеть RS-485. Для этого необходимо включить режим «Сеть RS-485» переключателем «Одиночный прибор/Сеть RS-485» и выбрать количество приборов в сети N (надпись «Адрес прибора» около окна выбора меняется на «Количество приборов»). Подключенные приборы должны иметь сетевые адреса от 1 до N.

Порядок калибровки полностью аналогичен описанному в п.7.3.2. По каждому пункту последовательности программа будет выполнять операции калибровки для каждого подключенного прибора. Номер текущего прибора и индикатор состояния отображаются ниже кнопок калибровки.

7.3.4. Калибровка токового выхода.

Калибровка токового выхода заключается в выставлении с помощью ползунковых регуляторов в нижней области главного окна требуемого выходного тока (4 и 20 мА), который контролируется миллиамперметром. Значение 16-разрядного кода внутреннего регистра микроконтроллера индицируется в окнах над регуляторами. Перемещать движки регуляторов можно с помощью мышки или клавиш PgUp, PgDn. Дискретность изменения кода (выходного тока) можно изменить с помощью окна выбора «Шаг». Шаг равен 1 при использовании клавиш «↓» и «↑».

По окончании нажмите кнопку «Ок». Результаты калибровки токового выхода сохраняются в EEPROM.

7.4.1 Установить границы срабатывания реле (уставок) на измерителе (любые значения).

Границы уставок устанавливаются через меню настройки (приложение 4).

7.4.2 Задать 2 min предела измерения прибора калибратором давления - манометром, при этом на измерителе должен гореть $\langle MIN1 \rangle$ и $\langle MIN2 \rangle$ на пульте проверки. Нижние красные индикаторы на измерителе должен загораться тогда, когда давление выставляемое калибратором будет равно нижним границе срабатывания уставки с погрешностью $\pm 1\%$.

Задать верхние пределы измерения прибора калибратором давления – манометром, при этом на измерителе должен гореть верхний красный индикатор, а на пульте проверки </br><MAX1> и и MAX2>. Верхний красный индикатор на Прома-ИДМ должен загораться тогда, когда давление выставляемое калибратором будет равно верхней границе срабатывания уставки с погрешностью ± 1%.

Если данные срабатывания реле не происходят выявить и устранить неисправность.

7.2.7 Калибровка чувствительного элемента при температуре.

7.2.7.1 Количество одновременно калибруемых измерителей от 1 до 6. Измерители (для выносного варианта только датчик !) поместить в термокамеру, где выдержать при температуре (65 ± 5) ⁰C в течение 1 часа.

Собрать схему, приведенную на рисунке 4.

Рисунок 4 - Схема калибровки ПРОМА-ИДМ при температуре.

М1 – манометр (вакуумметр, напоромер, тягонапоромер) образцовый кл.0,25; G1 – блок питания DR-4524; A1 - преобразователь интерфейса RS232 / RS485 типа ADAM-4520; A2 – ЭВМ РС с установленной SCADA – системой; A3...A8 – калибруемые Прома-ИДМ.

Затем провести калибровку чувствительного элемента аналогично пункту 7.2.4 настоящей инструкции.

При положительных результатах настройки Прома-ИДМ 4Х оформить паспорт.

Составил

Загидуллин А.Р

Проверил

Сафин Ф.М.

Дата составления _____ 2008 г.

Лицевая панель пульта проверки ПРОМА-ИДМ.

